Chapter 17

LANDSCAPE PLANTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Why Ornamental Plants?</td>
<td>2</td>
</tr>
<tr>
<td>II. Soils and Water Considerations</td>
<td>2</td>
</tr>
<tr>
<td>A. Soil Composition</td>
<td>2</td>
</tr>
<tr>
<td>B. Water Status Definitions</td>
<td>2</td>
</tr>
<tr>
<td>C. Water Movement</td>
<td>2</td>
</tr>
<tr>
<td>D. Soil Structure (Aggregate Size)</td>
<td>2</td>
</tr>
<tr>
<td>E. Drainage Problems</td>
<td>3</td>
</tr>
<tr>
<td>F. Overcoming Drainage Problems</td>
<td>3</td>
</tr>
<tr>
<td>III. Planting and Site Preparation</td>
<td>3</td>
</tr>
<tr>
<td>A. Types of Plant Materials</td>
<td>3</td>
</tr>
<tr>
<td>B. Planting</td>
<td>3</td>
</tr>
<tr>
<td>C. Pruning After Planting</td>
<td>4</td>
</tr>
<tr>
<td>D. Staking</td>
<td>4</td>
</tr>
<tr>
<td>IV. Plant Problems</td>
<td>4</td>
</tr>
<tr>
<td>A. Circling Roots/Potbound</td>
<td>4</td>
</tr>
<tr>
<td>B. Girdling Roots</td>
<td>4</td>
</tr>
<tr>
<td>C. Kinked Roots/One-Sided Root System</td>
<td>4</td>
</tr>
<tr>
<td>D. Root Rots</td>
<td>5</td>
</tr>
<tr>
<td>E. Changing Soil Grades</td>
<td>5</td>
</tr>
<tr>
<td>F. Trenching/Cutting Roots</td>
<td>5</td>
</tr>
<tr>
<td>G. Compaction</td>
<td>5</td>
</tr>
<tr>
<td>V. Stem Problems</td>
<td>5</td>
</tr>
<tr>
<td>A. Heart Rot</td>
<td>5</td>
</tr>
<tr>
<td>B. Stem Wounds</td>
<td>5</td>
</tr>
<tr>
<td>C. Sunscald or Southwest Disease</td>
<td>5</td>
</tr>
<tr>
<td>D. Branch Rots and Infections</td>
<td>6</td>
</tr>
<tr>
<td>E. Damage to Crotch Areas</td>
<td>6</td>
</tr>
<tr>
<td>F. Freeze Damage</td>
<td>6</td>
</tr>
<tr>
<td>G. Graft Incompatibility</td>
<td>6</td>
</tr>
<tr>
<td>VI. Leaf Problems</td>
<td>6</td>
</tr>
<tr>
<td>A. Drought</td>
<td>6</td>
</tr>
<tr>
<td>B. Frost Damage</td>
<td>6</td>
</tr>
<tr>
<td>C. Root Injury</td>
<td>6</td>
</tr>
<tr>
<td>D. Vascular System Injury</td>
<td>7</td>
</tr>
<tr>
<td>E. Salt Damage</td>
<td>7</td>
</tr>
<tr>
<td>F. Leaf Chlorosis and Nutrient Deficiencies</td>
<td>7</td>
</tr>
<tr>
<td>G. Herbicide Damage</td>
<td>7</td>
</tr>
<tr>
<td>H. Insecticide Injury</td>
<td>8</td>
</tr>
</tbody>
</table>

Further Reading | 8
Chapter 17

Landscape Plants

Susan M. Bell, Extension Educator, Ada County, Boise

I. Why Ornamental Plants?

Landscape plants are placed as they are for various purposes: to create shade, to define space, to enhance architecture, to provide food (e.g., fruit trees), and to further general aesthetics. These plants should be installed according to a plan, so that they are correctly selected and placed to create the desired design effect. Plantings should be in tune with the environmental situation and take into account such things as exposure, amount of light, pH, water availability, and soil type.

Trees and shrubs will last in the landscape for many years. However, when a stress is imposed on a plant, that plant becomes much more susceptible to other problems, including insects and disease. A large percentage of landscape plant problems can be related directly to improper selection of plant material and improper cultural practices that lead to plant stress. In some cases, the effects of improper cultural practices may not be seen for years.

II. Soils and Water Considerations

A. Soil Composition

Soils are roughly 50 percent solid material and 50 percent pore space. (Pores are holes in the soil that are either filled with air or water.)

1. Pore space, ideally, should be 50 percent air and 50 percent water.
 a. Air is necessary for root respiration and normal metabolism, including the uptake of water.
 b. Water is used in transpiration within the plant and for the transport of dissolved mineral nutrients from the soil to roots and on up the plant through the xylem.

2. The solid material is composed of organic matter, decomposed rock, and various biological life.

B. Water Status Definitions

1. Hygroscopic water—Tightly bound to the soil particles; not available for plant growth.

2. Capillary or available water—Held less tightly to soil particles; available for plant usage.

3. Gravitational water—Moves with the force of gravity; drains away. This water is not available to the plant.

4. Saturated conditions—Tend to exclude air; detrimental to most plants (with the exception of aquatic species).

C. Water Movement

1. The thicker the film of water, the greater the ease of movement in the soil. The thinner the film of water, the harder it is to move through the soil, therefore, becoming less readily available to plants.

2. Water movement is always from wetter areas in the soil mass to drier areas.
 a. When water is lost from the soil surface (through evaporation), more water is drawn up from lower levels.
 b. When a plant draws water in through the roots, more water moves into the area.
 c. Roots do not seek water; roots grow where water is.

D. Soil Structure (Aggregate Size)

1. Soil particles may be made up of many small particles clumped together.
 a. Spaces (macropores) between large particles contain air for root respiration.
b. Spaces between smaller particles and within very large particles contain capillary (available) water. Water also is found on the surface of larger particles.

2. Increase aggregate size by:
 a. Adding of calcium (usually gypsum): Only works with clay soils.
 b. Adding organic matter: Water and air are found in and between the organic matter particles. Organic matter loosens a clay soil for better air and water movement. In sandy soils, organic matter helps hold water and nutrients.

E. Drainage Problems
1. Hard, compacted soil—Air space squeezed out; low infiltration, little air space, and slow drainage.
2. Impenetrable layers—Clay layers, hardpan, and plowpans, etc.; may not allow water or roots through.
3. Fine-textured soil—Preferable over a coarse-textured soil or gravel.
 a. At the interface, water cannot move rapidly into coarse soil; consequently, moisture is limited or not continuous.
 b. Water movement downward is impeded across the interface, and much of the finer soil’s pore space may fill with water.
4. Coarse-textured soils over or contained within a fine-textured soil.
 a. Drainage through coarse soils is rapid.
 b. Infiltration into fine soils is slow, causing macropores in the coarse soil to fill with water.
 c. Roots lack oxygen and root rots may ensue.
 d. Add organic matter to the coarse soil to slow water penetration.

F. Overcoming Drainage Problems
1. Till by adding 3 to 4 inches of organic matter.
2. Raise plant slightly above grade and create a bed with good soil, or a raised bed.
3. Add tile to create good drainage.
4. Contour slope away from plants so that water runs off.
5. Break through hardpan layers.

III. Planting and Site Preparation

A. Types of Plant Materials
1. Bareroot (B.R.)—Dug without a ball of soil; little or no soil around the roots. Examples: dormant deciduous shrubs, roses, deciduous trees, and small evergreens.
2. Balled and burlapped (B and B)—Dug with soil that is enclosed in burlap or some sort of synthetic material. The root system has been cut for easier handling and transport.
3. Field-potted—Dug with or without soil and potted into a container.
4. Container—Plant grown for a time in a container.

B. Planting
1. Bareroot
 a. Cut back damaged or broken roots.
 b. Dig hole twice as large as the root system.
 c. Put the plant in the hole at the same level it grew originally. Build a cone or mound of soil at the bottom of the hole under the plant for support and to aid in spreading the roots. Be sure the roots are spread.
 d. Backfill with native, not amended, soil.
 e. Water thoroughly.
 f. Fertilize with a high phosphate fertilizer (5-10-10) or a balanced slow-release fertilizer (10-10-10). Fertilizers may be added to a backfill material. Fertilizer may also be added to the soil surface after watering. Always follow label directions as to amount.
2. Balled and burlapped.
 a. Dig hole twice as wide as the ball of soil.
 b. Remove all of the rope, twine, or string on the ball after setting it in position in the hole. The burlap can be sliced on the sides, and the top burlap
should be laid back so that no burlap is exposed above ground. Burlap exposed above ground will wick moisture away from the root ball. Synthetic or plastic burlaps should be removed totally. Unless B and B trees have been kept in burlap for a long time, don’t worry about girdling roots or cutting damaged roots.
c. Follow steps d through f of Section B, subsection 1.

3. Container plant.
a. Dig hole twice as wide for root system spread.
b. Remove container, no matter what type.
c. Roots.
 • If the roots are not circling (potbound), carefully spread the exterior roots outward, away from the soil ball.
 • If the roots are circling, make three to four vertical cuts into the sides of the root ball (1/4 to 1/2 inch into the ball). If the roots are woody and cannot be cut with a knife, lay the ball on its side. Using a sharpened spade or shovel slice through the lower half of the root ball. This is called “butterfly.” Spread out the two flaps of roots and place in planting hole so the top of the root system is level with, or slightly higher, than the surrounding soil. When butterflies, be sure not to damage the crown by splitting too close to the trunk. Make sure the split area is filled with soil so that no air spaces are left.
d. Follow steps d through f of Section B, subsection 1.

C. Pruning After Planting
1. Leave as much of the crown intact as possible, and remove only dead, injured, and diseased branches.
2. Remove interfering, rubbing, or poorly placed branches.
3. Remove a branch from narrow “V” crotches or multiple leaders.
4. Prune to shape, if necessary.

D. Staking
1. Avoid staking unless wind is a problem. Stake as low on the stem as possible and remove the stake after 1 year.
2. Reasons for staking.
 a. To anchor plant until it can root into the soil.
 b. To protect the tree from slanting with the wind.
 c. To straighten a crooked trunk.
3. Used mostly for B.R. and B and B plants.
4. One- and two-stake methods.

IV. Plant Problems
Problems associated with plant roots may show up in other plant parts, especially the leaves.

A. Circling Roots/Potbound
1. Symptoms—A general decline of plant vigor over a period of time.
2. Causes—Plant remaining in container too long at some stage of development, not necessarily the last stage of production.
3. Remedies—“Butterfly” the root ball, or cut and spread the roots before planting.

B. Girdling Roots
1. Symptoms—Girdling roots limit water and nutrient transport causing deterioration of the plant. Top growth diminishes; plant is stressed.
2. Causes—An impenetrable planting hole; twisting the plant after setting into hole; bending roots to fit into a hole that is too small; and planting potbound or rootbound container stock.
3. Remedies—Chop off girdling root; spread roots when planting; remove debris or rocks in planting area.

C. Kinked Roots/One-Sided Root System
1. Symptoms—A general decline of plant vigor over a period of time.
2. Causes—Improper production methods (such as dragging with a mechanical planter causing “J” hooked roots or jamming the plant in the pot or the planting hole).
3. Remedies—Cut off kinked roots when planting; carefully spread and straighten the roots.

D. Root Rots
1. Symptoms—Soft, brown, partially to totally decayed roots resulting in wilting or death of the plant.
2. Causes—Cause varies with susceptibility of the plant. There might not have been enough soil aeration; the water table might be high; the backfill might have been amended with fresh manures when planting; or the soil might be waterlogged.
3. Remedies—Improve downward and lateral drainage; tile, if necessary; and plant in raised beds. Select a water-loving species of plant and amend the soil to improve drainage.

E. Changing Soil Grades
1. Symptoms—No buttressing or flaring roots at tree base; general decline of tree; leaves and branches die from top down; collar rots are evident. The decline may take several years to occur or to complete. Susceptibility varies with species.
2. Causes—Filling with soil or pavement on top of an established root system results in a decreased air supply to the plant changing drainage and water patterns.
3. Remedies—Cover roots with a thick layer of gravel, then with soil. Provide drainage, and in some cases, welling the trunk will help.

Note: Welling is the building of a “well” or wall around the tree several feet out to keep soil away from the trunk.

F. Trenching/Cutting Roots
1. Symptoms—Cutting roots reduces water and nutrient uptake. The decline may take several years to occur or complete. Cuts can become infected with root rot leading to the decline of plant growth. The result is often the death of a tree from the top downward. Sometimes the decline is limited to that half of the tree with the cut or damaged roots.

V. Stem Problems
Stem maladies usually arise from improper cultural practices and stresses to the plant.

A. Heart Rot
1. Symptoms—Decay of heartwood.
2. Causes—Improper pruning, topping, breakage, or wounding of the stem or the large branches.
3. Remedies—Prune properly and avoid wounding. Remove decayed branch wood; if rot is in an advanced stage, remove the tree.

B. Stem Wounds
1. Symptoms—Cankers, girdling, holes, splits, and oozing.
2. Causes—Various, including hitting the tree with lawn mowers and string weeders; leaving support wires or B and B string around stem; diseases, borers, and sunscald.
3. Remedies—Stay away from plant stems and trunks with equipment. Remove all lawn grass to at least 1 foot from the trunk. Keep all mulch 2 to 3 inches from plant stems. Identify and treat insects or disease. Remove labels and ties when planting. Painting or spraying with tree wound compound does not improve healing, but it may prevent insect entry.

C. Sunscald or Southwest Disease
1. Symptoms—Bark tends to be blistered, burnt, dead, or split on the southern or
southwestern sides of the trunk. Young and newly transplanted trees are the most susceptible.

2. Causes—Alternating freezing and thawing of bark on sunny side of tree during winter. Intense heat during summer.
3. Remedies—Shade south and southwest sides of trunk; wrap the trunk with tree wrap or paint with white, water-based (latex) paint. If there is an advanced stage of damage, carefully remove any dead bark, apply tree wound dressing, and wrap to keep insects out of heartwood.

D. Branch Rots and Infections
1. Symptoms—Oozing, cankers, holes, and splits.
2. Causes—Improper pruning. Branch stubs or flush cuts leave a tree open to disease and insects.
3. Remedies—Prune correctly; cut back only to the branch collar; do not top trees. Treat insects and diseases when first noticed.

E. Damage to Crotch Areas
1. Symptoms—Splits, oozing at crotch.
2. Causes—Narrow “V” crotches, borers, water gathering in crotch.
3. Remedies—Prune out all but one of the leaders if the tree is young and has multiple leaders. Narrow branch angles can be spread when the tree is young; cable or brace narrow crotches if the tree is older to prevent breakage.

F. Freeze Damage
1. Symptoms—Blackened tissue; dead twigs or buds; death of plant. Stem dieback. Usually younger stems die, but older wood also can be damaged during severe winters. There is generally a partial to total necrosis of the young leaves. Older leaves may become distorted later. New growth might have been frozen by late spring frost when plant was in the soft-growth stage.
2. Causes—Lethal winter temperatures and early or late frosts.
3. Remedies—Use frost prevention methods; select trees and shrubs specified for your zone; do not fertilize trees and shrubs after July 1.

G. Graft Incompatibility
1. Symptoms—Large overgrowths above and below union; earlier than normal fall coloration; a stem that breaks off at graft.
2. Cause—Incompatibility between scion and stock.
3. Remedy—Purchase plants rooted from cuttings or use a reliable source of grafted stock.

VI. Leaf Problems
Problems with stems and roots often will show up in the leaves. If a plant is wilted, the leaves are either not getting enough water or are losing water faster than it is being supplied by the roots. Determine the cause of wilting. There also are many insects and diseases that affect leaves.

A. Drought
2. Causes—Extended periods of dryness. High heat/bright sunlight on shade-loving plants could cause leaf scorch, early leaf drop, or marginal and interveinal chlorosis or necrosis.
3. Remedies—Water plant; provide better soil preparation by adding organic matter to increase water-holding capacity; mulch to reduce surface evaporation. Select drought-tolerant plants. Shade plant; mist periodically for temporary cooling.

B. Frost Damage
1. Symptoms—Partial to total necrosis of young leaves or buds. Older leaves may become distorted if buds were injured.
2. Causes—New growth frozen by late spring frost when the plant is in the soft-growth stage.

C. Root Injury
2. Causes—Root damage due to trenching, insects (such as root weevils), or disease. Overwatering limits oxygen uptake by roots and encourages root rot.
3. Remedies—Determine the cause, then take appropriate action. If the cause is not a root rot, then proper watering of the remaining root system will help. Fertilization with a high phosphorus fertilizer may help rejuvenate the root system. If overwatering is the problem, increase drainage and cut back on water. If a high water table or poor drainage exists, choose water-loving plants (such as a willow).

D. Vascular System Injury
1. Symptoms—Wilting or drying of a portion of the plant.
2. Causes—Disease, such as Verticillium wilt, can plug the xylem vessels.
3. Remedies—Determine the cause and take appropriate action. Remove the infected portion; treat for Verticillum.

E. Salt Damage
1. Symptoms—Marginal to interveinal chlorosis/necrosis; rootlets are brown instead of white.
2. Causes—Salts from excessive use of commercial fertilizers, manures, and de-icing salts. The latter may be more prevalent next to sidewalks and driveways.
3. Remedies—Leach with water, if possible; limit the use of offending materials. Alternate organic fertilizers with commercial fertilizers to reduce salt buildup.

F. Leaf Chlorosis and Nutrient Deficiencies
1. Nitrogen deficiency.
 c. Remedy: Fertilize with a nitrogen fertilizer.
2. High pH (over 7.5).
 a. Symptoms: Intervereinal chlorosis, light green to white in color (with zinc, older leaves affected; with iron, new leaves affected first). The margins of leaves may become necrotic, but the veins remain green. With zinc deficiency, leaves may be small, narrow, and thickened. Foliage loss may be early, and leaves at tips of branches may be bushy with few or none along the branch. Manganese deficiency is similar to iron deficiency, but chlorosis is not so dominant on young leaves. Also there is severe browning and dropping of leaves with maturity.
 b. Cause: Iron, zinc, or manganese deficiencies because of the soil pH.
 c. Remedies: A long-term solution is to decrease soil pH. A temporary solution is to apply the deficient nutrient. You may need to make annual spring or fall applications.
3. Other causes of leaf chlorosis.
 a. Wrong soil pH for acid-loving plants. Example: azaleas.
 b. Herbicides (see Subsection G of this section and Table 1).
 c. Drought (see Section VI, subsection A).
 d. Natural leaf maturity and abscission in autumn.
 e. Natural variegation.

G. Herbicide Damage
Herbicides are formulated to be toxic to specific weeds, but they also may cause damage to desirable plants.
1. Symptoms—Some herbicides act hormonally and produce a twisted, cupped, puckered, or distorted growth. Other herbicides inhibit photosynthesis and chlorophyll formation, causing a peculiar coloration or characteristic chlorosis depending on the material used (see Table 1 on next page). In general, if many plants in one area are affected with unusual twisting, puckering, or with strange colorations and drying leaves, chemical or herbicide misuse may be the culprits. If only part of the conifer root system is affected by a herbicide, the damage may create a spiral pattern on the stem of the plant.
2. Causes—Most people do not know where the root zones of desirable plants are; consequently, they overspray, and translocation of the herbicide into a desirable plant occurs.
3. Remedies—Almost all problems arise from misapplication and misuse. Few problems arise when label directions are followed closely and the broadcasted material is kept 5 to 10 feet away from the dripline of desirable plants. Spot treat weeds rather than broadcast when possible.

H. Insecticide Injury

1. Symptoms—Dormant oil will remove the waxy bloom that gives the blue cast to Colorado Blue Spruce Oils used on deciduous plants that have started to show green will burn exposed green tissue. Some insecticides, such as malathion, will burn leaves when applied during high temperatures.

2. Causes—When used for insect and mite control on needled evergreens, dormant oil may cause burns, especially if the concentration is too high, if the oil is applied during freezing weather, or if the plant has started to grow.

Further Reading

Books

Booklets and Pamphlets
University of Idaho Extension
CIS 867 Cold Hardiness in Woody Landscape Plants: Its Role in Winter Survival and How to Maximize It
CIS 869 Controlling Sunscald on Trees and Shrubs

Table 1. Common herbicides.

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Damage symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichlobenil (Casoron)</td>
<td>Broadleaf plants: Tip, marginal to interveinal chlorosis/necrosis. Sometimes more severe on leaves oriented toward the afternoon sun. Conifers: Needle tip chlorosis to necrosis.</td>
</tr>
<tr>
<td>Dicamba (Banvel)</td>
<td>Broadleaf plants: Twisted, cupped, distorted new growth, chlorosis, necrosis, death of stem tissue. Conifers: Distorted, twisted needles, needle necrosis from the base to the tip; club-shaped growth, needle distortion on pines.</td>
</tr>
<tr>
<td>Glyphosate (Roundup)</td>
<td>Broadleaf plants: Yellowing and necrosis of part or entire plant. New leaves do not develop correctly; they are skinny, strap-shaped, yellow.</td>
</tr>
<tr>
<td>Triazines (Atrazine)</td>
<td>Broadleaf plants: Marginal chlorosis.</td>
</tr>
<tr>
<td>Simazine (Princep)</td>
<td>Conifers: Tip chlorosis.</td>
</tr>
<tr>
<td>Chemical sterilants (many kinds)</td>
<td>Severe chlorosis, and necrosis, death if applied near the root system of desirable plants.</td>
</tr>
</tbody>
</table>