These fertilizer guidelines, such as this one for berries, are based on soil/plant relationships established through research by the University of Idaho, Oregon State University, and Washington State University. Results and experience indicate that the guide rates suggested will produce above average yields if other factors are not limiting production. Thus, the fertilizer guide assumes good management.

The suggested fertilizer rates, which are based on a soil test, will be accurate for your field provided: (1) the soil samples represent the area to be fertilized, and (2) the crop history information supplied is complete and accurate. An analysis is only as good as the soil sample collected. These fertilizer guide rates and critical levels are subject to change as additional research information becomes available.

Blueberries

Blueberry production in northern Idaho will most likely require annual applications of nitrogen (N), phosphorus (P), sulfur (S), and occasional applications of potassium (K) and magnesium (Mg).

Nitrogen (N) — Blueberries have a greater need for N than other berry crops. Generally, no N fertilizer is used during the year blueberries are planted, although at the grower’s discretion, 20 to 25 pounds of N per acre may be applied as the blueberries are set into the ground. On established blueberries, N is essential for optimum plant growth, production of fruiting wood, and desirable berry size.

After the first year, 75 to 100 pounds of N per acre are required for good blueberry yields. Amounts of N must be adjusted up or down in accordance with yearly plant growth, however, blueberry plants should produce enough strong, new unbranched shoots each year to replace old canes and the weak, “twiggy” growth removed during annual pruning. This would be at least three to five strong canes arising from the base of the plant or halfway up the old canes.

The N fertilizer should be applied in the ammonium form as ammonium sulfate (21-0-0-24) or urea (45-0-0). The total amount of N applied during the growing season should be split into three separate applications: 50 percent should be applied at bud break (along with all the P and K), 30 percent in late May, and the remaining 20 percent in early July. Winterkill can result from fertilizer applied too late in the season.

Phosphorus (P) — Blueberries will respond to P fertilizer if soil test levels are low. The soil test is based on extractable P present in a soil sample taken from the upper 12 inches of the soil profile. Table 1 shows the rates of P to apply for different soil test levels and for each of the berry types. On soils derived from volcanic ash

<table>
<thead>
<tr>
<th>Soil test P (ppm)</th>
<th>Application rate (lb/acre)²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blueberries</td>
</tr>
<tr>
<td>NaOAc 0 to 1</td>
<td>100</td>
</tr>
<tr>
<td>1 to 2</td>
<td>80</td>
</tr>
<tr>
<td>2 to 3</td>
<td>60</td>
</tr>
<tr>
<td>3 to 4</td>
<td>30</td>
</tr>
<tr>
<td>4 to 5</td>
<td>10</td>
</tr>
<tr>
<td>5 to 10</td>
<td>0</td>
</tr>
<tr>
<td>over 10 over 100</td>
<td>0</td>
</tr>
</tbody>
</table>

1Soil test P can be determined by three different procedures: sodium acetate (NaOAc), Bray I method, or by sodium bicarbonate (NaHCO₃). Sodium bicarbonate should not be used on soils with pH values less than 6.2. Use the column indicated by your soil test report.

²P x 2.29 = P₂O₅, or P₂O₅ x 0.44 = P.
parent material, the P should be applied as a band application due to the high capacity of those soils to fix P. The band should be 3 to 4 inches deep if possible.

Potassium (K) — Blueberries require adequate levels of K for maximum yields. The soil test for K is based on extractable K in a sample taken from the upper 12 inches of the soil profile. Table 2 shows the rates of K to be applied for different soil test levels and for each berry variety. When K is deficient in soils, the fertilizer source should be potassium sulfate (0-0-50-18), because research has shown that potassium chloride (muriate of potash) is toxic to blueberry plants.

Sulfur (S) — Apply sulfur to blueberries at the rate of 25 to 30 pounds S per acre on an annual basis. N or K fertilizers containing S will meet this need. Gypsum (0-0-0-17) can also be used as an S fertilizer source.

Magnesium (Mg) — Many ash-influenced soils in northern Idaho are Mg deficient. Soil test values (soluble Mg) less than 0.25 meq/100 g indicate a need for Mg fertilizer. Soils low in Mg should receive 500 pounds Mg per acre as an application of epsom salts (magnesium sulfate) or potassium-magnesium sulfate.

Soil pH — Blueberries grow best in soils with pH values between 4.5 and 5.5. If the soil pH is less than 4.5, apply lime, preferably dolomitic limestone, to increase the soil pH. The lime should be applied to the soil and thoroughly incorporated before setting the plants.

Established Raspberries (Fruiting Years)

Nitrogen — Annual application of 50 to 65 pounds of N per acre are recommended for red raspberry production. The N should be applied to the soil surface along the row or banded with P in the spring (late March or early April). If cane growth is inadequate and internodal length less than 4 inches, more N can be used (65 to 75 pounds per acre). Remember that a 4-inch internodal length (distance between buds 2 to 3 feet above the soil surface) is desirable. Nitrogen is the most important factor controlling internodal length.

Phosphorus — Red raspberries will respond to applications of P if soil test values are low. The soil test is based on extractable P present in a soil sample taken from the upper 12 inches of the soil profile. Table 1 shows the rates of P to apply for different soil test levels for each berry variety. The P should be applied in a band on each side of the row about 1 foot from the edge of the crown and, if possible, 3 to 4 inches deep. Apply P in the spring.

Potassium — Red raspberries require adequate levels of soil K for maximum yields. Potassium fertilizer should be applied to soils in the spring. Table 2 shows the rates of K2O to be applied for different soil test levels and each berry variety. Potassium fertilizers (potassium chloride or potassium sulfate) may be broadcast between the rows or banded with P and N fertilizers.

Sulfur — S fertilizers should be applied at the rate of 30 pounds per acre to any raspberry field testing less than 10 ppm S. This application is best accomplished with gypsum and should be made in the spring.

Boron — Boron should be applied to soils containing less than 0.5 ppm B in the surface 12 inches. Boron should be applied at the rate of 1 lb/acre in the spring and should never be applied in a band. For more information on B see University of Idaho CIS 1085, *Boron in Idaho*.

Table 2. Potassium fertilizer rates for blueberries, raspberries, and strawberries based on soil tests.

<table>
<thead>
<tr>
<th>Soil tests for K1 (0- to 12-inch)</th>
<th>Application rates (lb/acre)2</th>
<th>Blueberries</th>
<th>Raspberries</th>
<th>Strawberries</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ppm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 to 50</td>
<td>80</td>
<td>90</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>50 to 75</td>
<td>50</td>
<td>60</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>75 to 100</td>
<td>30</td>
<td>40</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>more than 100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

1 Soil extractant is sodium acetate.
2 K x 1.20 = K2O or K2O x 0.83 = K.
Magnesium—Soil test Mg values less than 0.25 meq/100 g (soluble extract) indicate a need for Mg. Deficient soils should receive an application of 500 pounds per acre of epsom salts (magnesium sulfate) or potassium-magnesium sulfate.

Strawberries

Strawberry production in northern Idaho will most likely require annual applications of N, P, and S and occasional applications of K, Mg, and B. Newly established strawberry plantings and established stands require different fertilization.

Establishing Strawberries

Nitrogen—From 35 to 50 pounds N per acre should be applied to soils at the rate of 30 pounds S per acre before planting. Gypsum is an acceptable S fertilizer source.

Established Strawberries (Fruiting Years)

Nitrogen—Nitrogen should be applied at rates between 35 and 50 pounds N per acre between mid-August and early September. Nitrogen fertilizer should not be applied in the spring during a fruiting year as it will often cause excessive foliage, soft berries, and increased fruit rot. The plants should receive 100 pounds P₂O₅ per acre before planting.

Phosphorus—Phosphorus is important in establishing strawberry plants. A starter solution made with 1 gallon of 52 percent phosphoric acid added to 100 gallons of water helps give the plants early vigor. Apply at a rate of 1 cupful of this acid solution per plant at setting, regardless of soil P test value. Soils testing less than 3.0 ppm P in a soil sample taken from the top 12 inches should receive 100 pounds P₂O₅ per acre before planting.

Sulfur—Sulfur should be applied to soils at the rate of 30 pounds S per acre before planting. Gypsum is an acceptable S fertilizer source.

Other Nutrients

Potassium—Soil test K values less than 0.75 meq/100 g (soluble extract) indicate a need for K. Deficient soils should receive an application of 500 pounds per acre of potassium chloride or potassium sulfate. K fertilizers should be applied only in the fall.

Sulfur—Sulfur should be applied at a rate of 25 pounds per acre in the fall to all strawberry fields that have 12-inch soil samples testing less than 10 ppm S. Sulfur can be applied as ammonium sulfate or gypsum or as potassium sulfate if K is needed.

General Comments

1. Select the varieties best suited for local conditions. Obtain certified virus-free plants from reputable nurseries. The time of planting and plant spacing will vary depending on the variety and your area.
2. Remember that soil pH is an important factor in site selection. Blueberries grow best on soils with pH values between 4.5 and 5.5; raspberries grow best between pH 6.0 and 6.5; strawberries grow best between pH 5.0 and 6.5.
3. Good drainage is important for all berry crops. At the same time adequate water is needed to promote optimum growth.
4. Blueberries and raspberries should be fertilized in the spring. Conversely, strawberries require late summer fertilization. When N is applied too late in the summer, tender growth may be subject to winterkill.
5. Good insect, disease, and weed control will help ensure maximum yields.
6. Fertilization regimes for establishing plants are different from those for fruit-producing plants.
7. Annual applications of nitrogen, phosphorus, and
sulfur will be required to produce maximum yields and promote stand longevity. Soil levels of magnesium, potassium, and boron should be monitored.

Contact the extension educator in your county if you have questions regarding the interpretation of this information.

The Authors
Robert L. Mahler is a research soil scientist in the Soil Science Division in Moscow, and Danny L. Barney is an extension horticulturist in the Plant Science Division at Sandpoint R&E Center. Both are in the University of Idaho’s Department of Plant, Soil and Entomological Sciences.

Publication Orders
To order publications suggested in this article or for copies of other northern Idaho fertilizer guides contact the University of Idaho Cooperative Extension System office in your county or Ag Publications, PO Box 442240, University of Idaho, Moscow, Idaho 83844-2240:
 phone 208/885-7982
 email: cking@uidaho.edu
BUL 704, Soil Sampling, $2.00
CIS 811, The Relationship of Soil pH and Crop Yields in Northern Idaho, 35¢
CIS 787, Liming Materials, 50¢
CIS 1085, Essential Plant Micronutrients: Boron in Idaho, $3.00
CIS 1087, Essential Plant and Animal Micronutrients: Molybdenum in Idaho, $1.00
These northern Idaho fertilizer guides are Web only and may be downloaded from the Internet by visiting our Web site:
 http://info.ag.uidaho.edu
CIS 447, Northern Idaho Fertilizer Guide: Alfalfa
CIS 453, Northern Idaho Fertilizer Guide: Winter Wheat
CIS 785, Northern Idaho Fertilizer Guide: Winter Rapeseed
CIS 788, Northern Idaho Fertilizer Guide: Bluegrass Seed
CIS 820, Northern Idaho Fertilizer Guide: Grass Seedings for Conservation Programs
CIS 826, Northern Idaho Fertilizer Guide: Chickpeas
CIS 851, Northern Idaho Fertilizer Guide: Legume and Legume-Grass Pastures
CIS 853, Northern Idaho Fertilizer Guide: Grass Pastures
CIS 920, Northern Idaho Fertilizer Guide: Spring Barley
CIS 921, Northern Idaho Fertilizer Guide: Spring Wheat
CIS 954, Northern Idaho Fertilizer Guide: Winter Barley
CIS 1012, Northern Idaho Fertilizer Guide: Spring Canola
CIS 1083, Northern Idaho Fertilizer Guide: Lentils
CIS 1084, Northern Idaho Fertilizer Guide: Spring Peas