Commercially manufactured fertilizers, when properly used, provide a satisfactory source of plant nutrients and can increase the yield and quality of crops when applied to nutrient-deficient soils. Other materials such as manure, sewage sludge, and some industrial wastes also can satisfy the nutrient needs of crops. In many situations, factors such as accessibility and transportation costs result in commercially manufactured fertilizers providing the most economic means of improving soil fertility.

This publication defines terminology commonly associated with chemical fertilizers and their use. In addition, this publication shows how to translate fertilizer recommendations into actual pounds of fertilizer per unit area and provides general guidelines for fertilizer application for the homeowner.

Terminology

Plant Nutrient
Plants require 14 elements that they cannot obtain from air or water. These elements are plant nutrients and consist of the macronutrients nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), and magnesium (Mg) and the micronutrients boron (B), chlorine (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn). Macronutrients are nutrients that plants require in large quantities; they require much smaller amounts of micronutrients.

Fertilizer Nutrient
Any plant nutrient. The term is used only in the United States and is interchangeable with “plant nutrient.”

Fertilizer
Any substance that is added to the soil or sprayed on plant foliage to supply one or more plant nutrients. Fertilizers are not pesticides, but some (lawn) fertilizers are mixed with pesticides.

Fertilizer Material
Any substance that contains one or more plant nutrients.

Fertilizer Carrier
The fertilizer material containing the plant nutrients (for example, potassium chloride [KCl] is a carrier of potassium).

Straight Fertilizer
A fertilizer containing only one nutrient. Examples include urea, which contains only nitrogen, and triple superphosphate, which contains only phosphorus.

Mixed Fertilizer
A fertilizer that contains at least two of the three macronutrients N, P, and K. Several types of mixed fertilizers are available. This definition does not apply outside the United States.

Complete Fertilizer
A fertilizer that contains the major macronutrients—N, P, and K.

Filler
An inert material added to mixed fertilizers to finish out the weight requirements in a given quantity of material (the weight basis is usually a ton). Fillers are rarely used today because of the costs to ship, store, and handle material that has no plant nutrient value.

Fertilizer Grade
The minimum content of plant nutrients guaranteed by the manufacturer, expressed in terms of the percentages by weight of total N, available P (expressed as P₂O₅), and available K, or potash, (expressed as K₂O). The grade is always listed in this order: N, P₂O₅, K₂O (fig. 1). A fertilizer containing 10 percent N, 8 percent P₂O₅, and 15 percent K₂O would have a grade of 10-8-15.

Fertilizers often contain macronutrients other than N, P, and K such as sulfur (S) and magnesium (Mg) or micronutrients such as boron (B), zinc (Zn), and molybdenum (Mo). Like nitrogen, these nutrients are listed on the fertilizer label on an elemental basis. Sometimes such nutrients are included in the fertilizer grade. When the fourth number on a fertilizer grade is not followed by a letter, the number represents the S content of the fertilizer. In all other cases, the fourth number, as well as any succeeding numbers, is followed by the chemical symbol of the nutrient that it represents. For example, a 15-5-10-8 fertilizer contains 15 percent N, 5 percent P₂O₅, 10 percent K₂O, and 8 percent S. Similarly, a fertilizer with a grade of 10-0-2-6Mg contains 10 percent N, no P, 2 percent K₂O, and 6 percent Mg (fig. 1).
High Analysis Fertilizer
Fertilizers containing relatively large amounts of nutrients. A fertilizer with a grade of 10-20-20 has a high analysis compared with a fertilizer with a grade of 4-8-9. High analysis fertilizers usually provide nutrients at lower costs per pound of plant nutrient than low analysis fertilizers because of lower transportation, storage, and application costs per pound of plant nutrient.

Fertilizer Ratio
The smallest whole number relationship among N, P₂O₅, and K₂O.

- A fertilizer with a grade of 5-10-10 has a 1-2-2 ratio.
- A fertilizer with a grade of 3-9-6 has a 1-3-2 ratio.
- A fertilizer with a grade of 17-3-7 has a 17-3-7 ratio.

Unit of Fertilizer
1. Officially, an amount of fertilizer material that contains 20 pounds of nutrient.
2. In Idaho, common usage of “units per acre” is actually pounds of plant nutrient per acre. One unit is equivalent to 1 pound. Thus, three fertilizer units of N equals 3 pounds of N.

Forms of Commercial Fertilizers

Bulk Fertilizer
An unpackaged or unbagged fertilizer.

Bulk-Blend (Blended) Fertilizer
A fertilizer containing two or more granular fertilizers, preferably of similar size, mixed and handled unbagged.

Chelate
A micronutrient fertilizer material in which soluble organic compounds bond with the micronutrients, increasing their availability to plants in the soil. Chelated micronutrient fertilizers are often more available to plants than micronutrient salts; however, their relatively high cost limits their use to the highest-value crops.

Coated Fertilizer
A granular fertilizer that has been coated with a thin layer of some substance such as clay or plastic to prevent caking or to control fertilizer release.

Conditioned Fertilizer
Fertilizer treated with an additive to improve physical condition (hardness) or prevent caking. The conditioning agent may be applied as a coating or incorporated into the product.

Fertilizer Crystals
Fertilizers in crystal form, usually of large enough size to be classified as granular fertilizers. Fertilizer crystals are generally smaller than 2 mm in diameter.

Granular Fertilizer
A fertilizer in the form of particles sized between an upper and lower limit or between two screen sizes, usually ranging in diameter from 1 to 4 mm and often more closely sized.

Liquid (Fluid) Fertilizers
Fertilizers wholly or partially in solution, including clear liquids, liquids containing solids in suspension, and anhydrous ammonia. Anhydrous ammonia sometimes is referred to as a gaseous fertilizer. While under pressure it is a liquid, but when released from the containing vessel, it instantly becomes gaseous.

Powdered Fertilizer
Fertilizer containing fine particles, usually with some upper diameter limit such as 3 mm but no lower limit.

Organic Fertilizer
A fertilizer consisting of harvested organic materials or wastes. Common organic fertilizers include bird guano, poultry and animal manures of all types, and municipal sewage sludges. Just because a fertilizer is composed of organic compounds, however, does not ensure it qualifies as “organic” under state or national standards for organic agricultural production.

Prilled Fertilizer
A type of granular fertilizer that is nearly spherical. Prills are made by solidifying free-falling droplets in air or a fluid medium.

Slow-Release (Controlled-Release) Fertilizer
Fertilizers that release nutrients slowly, providing them over a relatively long period (6 weeks to 12 months). These materials commonly are used in potting mixtures and turf management. Slow-release (controlled-release) fertilizers can reduce plant toxicity hazards (see salt index under “Other Concepts”) by slowing the release of nutrients into the soil water. Slow-release fertilizers are usually more expensive than regular commercially produced fertilizers.

Commercially available slow-release fertilizers include urea formaldehyde, sulfur-coated urea, and plastic-coated fertilizers. Other materials that release nutrients at relatively slow rates include organic fertilizers such as blood meal, tankage (dried animal residues usually freed from the fat and gelatin), sewage sludge, and manure.

Figure 1. Information found on all bags of fertilizer. The grade is the summary of the percentages of nitrogen, phosphate, potash, and other nutrients (by weight) contained in the bag.
Solid Fertilizers
Granules, prills, crystals, and powders (fig. 2).

Solution Fertilizer
Liquid fertilizers without solids.

Suspension Fertilizer
Liquid (fluid) fertilizers containing solids held in suspension by a small amount of special clay. The solids may be water-soluble materials in a saturated solution, water-insoluble materials, or both.

Specific Fertilizers

Superphosphate
A product made by treating phosphate rock with an acid. Single superphosphate (SSP) is also known as ordinary superphosphate (OSP) or normal superphosphate (NSP). This material normally contains between 16 and 22 percent P₂O₅. Triple superphosphate (TSP), also known as concentrated superphosphate (CSP), contains between 42 and 46 percent P₂O₅.

Ammonium Phosphate
A fertilizer containing N and P made by a process that includes a chemical reaction between anhydrous ammonia (NH₃) and phosphoric acid. Common fertilizers include monoammonium phosphate (MAP) with a grade of 11-55-0 and diammonium phosphate (DAP) with a grade of 16-48-0.

Muriate of Potash
Commonly known as potassium chloride (KCl), with a grade of 0-0-60. Muriate means the product contains chloride.

Sulfate of Potash
Commonly known as potassium sulfate (K₂SO₄), with a grade of 0-0-50-18. Sulfate of potash is usually more expensive than muriate of potash.

Solution 32
A liquid nitrogen fertilizer that contains 32 percent N. Its grade is 32-0-0. Similarly, Solution 28 is a liquid nitrogen fertilizer containing 28 percent N with a grade of 28-0-0. Liquid nitrogen fertilizers generally have N concentrations between 19 and 40 percent.

Rock Phosphate
The mined ore of phosphorus. It undergoes treatment with acids to produce plant-available P fertilizers. Plants are unable to take up the phosphorus from rock phosphate itself.

Application of Fertilizers

Fertilizer Application
Any process used to apply fertilizer in or on the soil.

Basal (Preplant) Application
Fertilizer application before establishment of a crop (pre-plant) to provide for part or all of its needs during the growing season.
The fertilizer may be applied before plowing, before planting, or during planting or transplanting.

Topdress Application
Application by broadcasting fertilizer over the soil surface after planting.

Broadcast Incorporated
Refers to an application where fertilizer is uniformly applied to the soil surface and then incorporated (mixed into) the soil with a tillage implement.

Band Application
Application of nutrients below, above, to one side, or to both sides of the seed or seedlings.

Pop-Up (Starter) Application
Application of small amounts of nutrients in direct contact with the seeds at planting.

Sidedress Application
A surface or subsurface band application after planting.

Foliar Application
Application of liquid fertilizer to the above-ground foliage.

Rates of Application of Fertilizer Materials
Recommended fertilizer application rates in current University of Idaho fertilizer guides are expressed in terms of pounds per acre (lb/acre) of N, P₂O₅, K₂O, and S. To convert these recommendations to lb/acre of an actual fertilizer material, use the following formula:

\[
\text{lb nutrient recommended/acre} \times 100 \div \% \text{ nutrient in fertilizer material} = \text{lb fertilizer needed/acre}
\]

Example 1:
To supply 120 lb/acre of N using ammonium nitrate (34-0-0):

\[
\frac{120 \times 100}{34} = 353 \text{ lb/acre of 34-0-0}
\]
Example 2:
To supply 120 lb/acre of N using urea (45-0-0) and 40 lb/acre of P₂O₅, using triple superphosphate (0-44-0):

For N, \[
\frac{120 \times 100}{45} = 267 \text{ lb/acre of 45-0-0}
\]

For P, \[
\frac{40 \times 100}{44} = 91 \text{ lb/acre of 0-44-0}
\]

Gardens and Lawns

To convert pounds per acre (lb/acre) to pounds per 100 square feet (lb/100 sq ft) multiply by 1/400. To convert pounds per 1,000 square feet multiply by 1/40. Thus, a fertilizer application of 400 lb/acre would equal 1 lb/100 sq ft.

In example 1, a rate of 353 lb/acre of 34-0-0 would equal 0.9 lb/100 sq ft. In example 2, the conversions would be 0.67 lb urea/100 sq ft and 0.22 lb 0-44-0/100 sq ft.

Fertilizer Application Tips

Apply fertilizers uniformly and accurately to avoid uneven plant growth, increase fertilizer effectiveness, and reduce risks to the environment, including contamination of surface and ground waters. (Note: If you are applying anhydrous ammonia you need to follow specific safety guidelines as this is a hazardous material.) Follow the recommended method of fertilizer application for these reasons:

1. Some nutrients such as P are fairly immobile in soil and should be mixed into the soil or placed or banded close to the rooting zone. For more information on fertilizer placement see University of Idaho CIS 757, *Fertilizer Placement*.

2. Fertilizers can damage plants if banded too close to seeds or roots or at rates in excess of those suggested. Fertilizers containing B should never be banded but should be applied evenly to the fertilized area and mixed into the soil.

3. N can be lost to the atmosphere as gaseous nitrogen (N₂), nitrous oxide (N₂O), or NH₃ when some N fertilizer materials are applied in irrigation water, left on the surface of alkaline soils, or applied to standing water.

Dilute solutions of fertilizers are sometimes applied as foliar sprays, most frequently for the application of micronutrients and sometimes when a quick response is required. Large amounts of nutrients cannot be applied in foliar sprays.

Some fertilizers can be applied effectively with sprinkler irrigation, especially the highly soluble N fertilizers. Less-soluble fertilizers and fertilizers that may precipitate (come out of solution) with high-calcium irrigation water may pose problems such as clogged pipes and reduced availability of plant nutrients. Fertilizer application to surface irrigation waters is extremely inefficient and should not be used.

Other Concepts

Acidity from Fertilizers

Some fertilizer materials, such as N fertilizers that contain ammonium (NH₄) or urea, produce acid when they react with the soil. The continuous use of these acidifying fertilizers over a period of years can appreciably lower the pH of soil, especially in the fertilizer bands. When these acid bands are located close to the plant root, damage can occur. The acidifying effect of fertilizers can be neutralized by applying lime.

Some fertilizers, for example calcium nitrate (Ca(NO₃)₂), have the opposite effect on soil. They raise the soil pH. Some fertilizers such as urea initially raise the pH of the soil, but their long-term effect is to increase soil acidity.

Salt Index

Fertilizers increase the concentration of salt in the soil, which can harm plants. The incorrect application of fertilizer can create salt concentrations that are toxic to plants.

The salt index is a measure of a fertilizer's capacity to elevate the salt level of the soil, usually expressed as salt index per pound of plant nutrients. Fertilizers with high salt indexes have a higher plant-toxicity potential than fertilizers with lower salt indexes. Salt toxicity is likely to be more serious in soils with low moisture contents; in coarse-textured, sandy soils; or where fertilizer is banded close to seeds or plants.

Soil Amendments

Soil amendments are materials used to alter the pH or physical properties of soil. Examples are lime (used to reduce soil acidity), elemental sulfur and aluminum sulfate (used to increase soil acidity), and gypsum and elemental sulfur (used to improve the physical condition of a sodic soil). Liming materials increase the pH of acid soils and supply calcium and magnesium. The most commonly used material is ground limestone rock (CaCO₃). For additional information on liming materials, consult CIS 787, *Liming Materials*.